skip to main content


Search for: All records

Creators/Authors contains: "Ho, Kai-Ming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A computational search for stable structures among both α and β phases of ternary ATB4borides (A= Mg, Ca, Sr, Ba, Al, Ga, and Zn,Tis3dor4dtransition elements) has been performed. We found that α-ATB4compounds withA= Mg, Ca, Al, andT = V, Cr, Mn, Fe, Ni, and Co form a family of structurally stable or almost stable materials. These systems are metallic in non-magnetic states and characterized by the formation of the localized molecular-like state of3dtransition metal atom dimers, which leads to the appearance of numerous Van Hove singularities in the electronic spectrum. The closeness of such singularities to the Fermi level can be easily tuned by electron doping. For the atoms in the middle of the3drow (Cr, Mn, and Fe), these singularities led to magnetic instabilities and magnetic ground states with a weakly metallic or semiconducting nature. Such states appear as non-trivial coexistence of the different spin ladders formed by magnetic dimers of3delements. These magnetic states can be characterized as an analog of the spin glass state. Experimental attempts to produce MgFeB4and associated challenges are discussed, and promising directions for further synthetic studies are formulated.

     
    more » « less
  2. The intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. A synthesis temperature of 850 K was selected based on in situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). The LiMnBi structure is built of alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic property measurements and solid-state 7Li nuclear magnetic resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of the Mn sublattice at ∼340 K, with no superconductivity detected down to 5 K. LiMnBi is air- and water-sensitive. Under aerobic conditions, Li can be extracted from the LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi or from the structurally related CaMn2Bi2. Such a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and a favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogues is unfavorably long. The studies of delithiation from layered-like LiMnBi under different chemical environments indicate that the yield of MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ∼50% of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds. 
    more » « less
  3. Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe 3 CoB 2 , through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe 3 CoB 2 exhibits a high magnetic anisotropy ( K 1 = 1.2 MJ/m 3 ) and saturation magnetic polarization ( J s = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials. 
    more » « less
  4. The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core. 
    more » « less